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Active Learning From Imbalanced Data: A Solution
of Online Weighted Extreme Learning Machine
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Abstract— It is well known that active learning can simultane-
ously improve the quality of the classification model and decrease
the complexity of training instances. However, several previous
studies have indicated that the performance of active learning
is easily disrupted by an imbalanced data distribution. Some
existing imbalanced active learning approaches also suffer from
either low performance or high time consumption. To address
these problems, this paper describes an efficient solution based on
the extreme learning machine (ELM) classification model, called
active online-weighted ELM (AOW-ELM). The main contribu-
tions of this paper include: 1) the reasons why active learning
can be disrupted by an imbalanced instance distribution and
its influencing factors are discussed in detail; 2) the hierarchical
clustering technique is adopted to select initially labeled instances
in order to avoid the missed cluster effect and cold start
phenomenon as much as possible; 3) the weighted ELM (WELM)
is selected as the base classifier to guarantee the impartiality of
instance selection in the procedure of active learning, and an
efficient online updated mode of WELM is deduced in theory;
and 4) an early stopping criterion that is similar to but more
flexible than the margin exhaustion criterion is presented. The
experimental results on 32 binary-class data sets with different
imbalance ratios demonstrate that the proposed AOW-ELM
algorithm is more effective and efficient than several state-of-
the-art active learning algorithms that are specifically designed
for the class imbalance scenario.

Index Terms— Active learning, class imbalance, cost-sensitive
learning, extreme learning machine (ELM), online learning,
stopping criterion.

I. INTRODUCTION

ACTIVE learning is a popular machine learning paradigm
and it is frequently deployed in the scenarios when large-

scale instances are easily collected, but labeling them is expen-
sive and/or time-consuming [1]. By adopting active learning,
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a classification model can iteratively interact with human
experts to only select those most significant instances for
labeling and to further promote its performance as quickly
as possible. Therefore, the merits of active learning lie in
decreasing both the burden of human experts and the complex-
ity of training instances but acquiring a classification model
that delivers superior or comparable performance to the model
with labeling all instances.

Past research has accumulated a large number of active
learning models, and generally, we have several different tax-
onomies to organize these models. Based on different ways of
entering the unlabeled data, active learning can be divided into
pool-based [2], [3] and stream-based models [4]. The former
previously collects and prepares all unlabeled instances, while
the latter can only visit a batch of newly arrived unlabeled data
at each specific time point. According to different numbers
of the labeled instances in each round, we have single-mode
and batch-mode learning models [5]. As their names indicate,
the single-mode model only labels one unlabeled instance on
each round, while the batch-mode labels a batch of unla-
beled examples once. In addition, we have several different
significance measures to rank unlabeled instances, including
uncertainty [6], [7], representativeness [8], inconsistency [9],
variance [10], and error [11]. Each significance measure has a
criterion for evaluating which instances are the most important
for improving the performance of the classification model. For
example, uncertainty considers the most important unlabeled
instance to be the nearest one to the current classification
boundary; representativeness considers the unlabeled instance
that can represent a new group of instances, e.g., a cluster,
to be more important, and inconsistency considers the unla-
beled instance that has the most predictive divergence among
multiple diverse baseline classifiers to be more significant.
In addition, active learning models can also be divided into
different categories according to which kind of classifier
has been adopted. Some popular classifiers, including naive
Bayes [12], k-nearest neighbors [13], decision tree [6], multi-
ple level perceptron (MLP) [14], [15], logistic regression [16],
support vector machine (SVM) [17]–[19], and extreme learn-
ing machine (ELM) [20], [21], have all been developed to
satisfy the requirements of active learning. In the past decade,
active learning has also been deployed in a variety of real-
world applications, such as video annotation [22], [23], image
retrieval [18], [24], text classification [25], [26], remote sens-
ing image annotation [27], speech recognition [28], network
intrusion detection [29], and bioinformatics [30].
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Active learning is undoubtedly effective, but several recent
studies have indicated that active learning tends to fail when it
is applied to data with a skewed class distribution [25], [26],
[31]–[33]. That is, similar to traditional supervised learning,
active learning also dares to face class imbalance problem.
Several previous studies have tried to address this prob-
lem by using different techniques. Zhu and Hovy [25] first
noticed this problem and tried to include several sampling
techniques in active learning procedure to control the balance
between the number of labeled instances in the minority
and majority classes. Specifically, they presented three dif-
ferent sampling techniques: random undersampling (RUS),
random oversampling (ROS), and bootstrap-based oversam-
pling (BootOS) [25]. The authors indicated that RUS is gener-
ally worse than the original active learning algorithm, whereas
both ROS and BootOS can increase the performance of
learning, although the former tends to be more overfitting than
the latter. Bloodgood and Vijay-Shanker [26] took advantage
of the idea of cost-sensitive learning, which is another popular
class imbalance learning technique, to handle a skewed data
distribution during active learning. In particular, cost-sensitive
SVM (CS-SVM) was employed as the base learner, empirical
costs were assigned according to the prior imbalance ratio, and
two traditional stopping criteria, i.e., the minimum error and
the maximum confidence, were adopted to find the appropriate
stopping condition for active learning. The method is robust
and effective; however, it is also more time-consuming because
the high time-complexity of training an SVM and no use
of online learning. Tomanek and Hahn [31] proposed two
methods based on the inconsistency significance measure:
balanced-batch active learning (AL-BAB) and active learning
with boosted disagreement (AL-BOOD), where the former
selects n labeled instances that are class balanced from 5n
bnew labeled instances on each round of active learning, while
the latter modifies the equation of voting entropy to make
instance selection focus on the minority class. It is clear that
AL-BAB is quite similar to RUS, but it is possibly worse
and wastes even more labeled resources than RUS, while
AL-BOOD must deploy many diverse base learners (ensem-
ble learning) to calculate the voting entropy of predictive
labels, which will inevitably increase the computational bur-
den. Therefore, we did not compare our proposed method
with above-mentioned methods in Section V. In addition to
the methods mentioned earlier, there has been research on
how to treat the class imbalance problem by active learning.
Ertekin et al. [32], [33] indicated that near the boundary of
two different classes, the imbalance ratio is generally much
lower than the overall ratio, thus adopting active learning can
effectively alleviate the negative effects of imbalanced data
distribution. In other words, they consider active learning to be
a specific sampling strategy. In addition, a margin exhaustion
criterion is proposed as an early stopping criterion to confirm
the stopping condition because they selected SVM as a base
learner.

To summarize the existing active learning algorithms
applied in the scenario of unbalanced data distributions,
we found that they suffer from either low classification per-
formance or high time-consumption problems. Therefore, in

this paper, we wish to propose an effective and efficient
algorithm. The proposed algorithm is named active online-
weighted ELM (AOW-ELM), and it should be applied in
the pool-based batch-mode active learning scenario with an
uncertainty significance measure and ELM classifier. We select
ELM as the baseline classifier in active learning based on three
observations: 1) it always has better than or at least comparable
generality ability and classification performance as do SVM
and MLP [34], [35]; 2) it can tremendously save training time
compared to other classifiers [36]; and 3) it has an effective
strategy for conducting active learning [21]. In AOW-ELM,
we first take advantage of the idea of cost-sensitive learning to
select the weighted ELM (WELM) [37] as the base learner to
address the class imbalance problem existing in the procedure
of active learning. Then, we adopt the AL-ELM algorithm [21]
presented in our previous paper to construct an active learning
framework. Next, we deduce an efficient online learning mode
of WELM in theory and design an effective weight update
rule. Finally, benefiting from the idea of the margin exhaustion
criterion, we present a more flexible and effective early stop-
ping criterion. Moreover, we try to simply discuss why active
learning can be disturbed by skewed instance distribution,
further investigating the influence of three main distribution
factors, including the class imbalance ratio, class overlapping,
and small disjunction. Specifically, we suggest adopting the
clustering techniques to previously select the initially labeled
seed set, and thereby avoid the missed cluster effect and
cold start phenomenon as much as possible. Experiments are
conducted on 32 binary-class imbalanced data sets, and the
results demonstrate that the proposed algorithmic framework is
generally more effective and efficient than several state-of-the-
art active learning algorithms that were specifically designed
for the class imbalance scenario.

The rest of this paper is organized as follows. Section II
introduces some priori knowledge related to this paper.
In Section III, we construct several representative synthetic
data sets with different distributions to analyze the reason why
active learning can be destroyed by skewed instance distribu-
tion. Section IV presents our proposed algorithmic framework
in detail. Section V provides the experimental results and
analysis. Finally, Section VI concludes the contributions of
this paper and indicates future work.

II. PRELIMINARIES

In this section, we present some preliminaries, including
the basic flow path of pool-based active learning, ELM,
WELM, online sequential ELM, and active learning with
ELM (AL-ELM). The proposed core algorithmic model of this
paper is presented in Section IV.

A. Flow Path of Pool-Based Active Learning

As mentioned in Section I, according to different ways of
entering the unlabeled data, active learning can be divided into
two categories: pool based [2], [3] and stream based [4], where
the pool-based scenario is more common in real-world appli-
cations. In pool-based scenario, all unlabeled instances are
previously prepared, and then a fraction of them are randomly
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Fig. 1. Flowchart of the pool-based active learning.

extracted and labeled by human experts, further executing
active learning iteratively. In other words, the classification
model can continuously select the useful instances from the
unlabeled pool to promote quality. In this paper, we focus on
the pool-based active learning scenario.

The basic flow path of the pool-based active learning
is described in Fig. 1. As we can see, the flow path is
organized into four parts, and it is a closed loop. In each
round, the labeled set is used to train a classification model.
Then, the model estimates the significance of each instance
in the unlabeled set, ranks them, and selects some of the
most significant instances to submit to human annotators, who
further provide labels for these instances and then insert them
into the training instances to update the labeled set. Active
learning repeats the process above until it satisfies a stopping
condition. Obviously, in the flow path mentioned above, how
to use the classification model to estimate, rank, and extract
significant unlabeled instances is the key point because it
directly concerns the quality of active learning.

B. Extreme Learning Machine

ELM that was proposed by Huang et al. [34], [35] is
a specific learning algorithm for single-hidden layer feed-
forward neural networks (SLFNs). The main characteristics
of ELM that distinguish it from those conventional learning
algorithms of SLFN are the random generation of hidden
nodes. Therefore, ELM does not need to iteratively adjust the
parameters to make them approach the optimal values, thus
it has faster learning speed and better generalization ability.
Previous research has indicated that ELM can produce better
than or at least comparable generality ability and classifi-
cation performance to SVM and MLP but only consumes
tenths or hundredths of training time compared to SVM and
MLP [34]–[36].

Let us consider a classification problem with N training
instances to distinguishing m categories, and then the i th train-
ing instance can be represented as (xi , ti ), where xi is an n×1
input vector and ti is the corresponding m× 1 output vector.
Suppose there are L hidden nodes in ELM and that all weights
and biases on these nodes are generated randomly. Then, for
the instance xi , its hidden layer output can be represented as a
row vector h(xi ) = [h1(xi ), h2(xi ), . . . , hL(xi )] by mapping
with an activation function (the most popular sigmoid function

is used throughout this paper). The mathematical model of
ELM could be described as

Hβ = T (1)

where H = [h(x1), h(x2), . . . , h(xN )]T is the hidden layer
output matrix overall training instances, β is the weight matrix
of the output layer, and T = [t1, t2, . . . , tN ] denotes the target
matrix. Obviously, in (1), only β is unknown, so we can adopt
the least-square algorithm to acquire its solution, which can
be described as follows:

β = H †T =
{

H T (H H T )−1T, when N ≤ L

(H H T )−1 H T T, when N > L
(2)

where H † denotes the Moore–Penrose generalized inverse of
the hidden layer output matrix H , which can guarantee the
solution is the least-norm least-squares solution for (1).

We can also train an ELM in the viewpoint of optimization
[35]. In the optimization version of ELM, we wish to synchro-
nously minimize ‖Hβ − T ‖2 and ‖β‖2, so the question can
be described as follows:

min: LpELM = 1

2
‖β‖2 + C

1

2

N∑
i=1

‖ξi‖2

s.t: h(xi )β = tT
i − ξT

i , i = 1, 2, . . . , N (3)

where ξi = [ξi,1, ξi,2, . . . , ξi,m ] denotes the training error
vector of the m output nodes with respect to the training
instance xi , and C is the penalty factor representing the
tradeoff between the minimization of training errors and the
maximization of generality ability. Obviously, this is a typical
quadratic programming problem that can be solved by the
Karush–Kuhn–Tucker theorem [38]. The solution for (3) can
be described as follows:

β = H †T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H T
(

I

C
+ H H T

)−1

T, when N ≤ L(
I

C
+ H H T

)−1

H T T, when N > L .

(4)

C. Weighted Extreme Learning Machine

WELM that can be regarded as a cost-sensitive learning
version of ELM is an effective way to handle the imbalanced
data [37]. Similar to CS-SVM, the main idea of WELM is
to assign different penalties for different categories, where
the minority class has a larger penalty factor C , while the
majority class has a smaller C value. Then, WELM focuses
on the training errors of the minority instances, making a
classification hyperplane emerge in a more impartial position.
A weighted matrix W is used to regulate the parameter C for
different instances, i.e., (3) can be rewritten as

min: LpELM = 1

2
‖β‖2 + C

1

2
W

N∑
i=1

‖ξi‖2

s.t: h(xi )β = tT
i − ξT

i , i = 1, 2, . . . , N (5)

where W is a N × N diagonal matrix in which each value
existing on the diagonal represents the corresponding regula-
tion weight of parameter C . Zong et al. [37] provided two
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different weighting strategies that are described as follows:
WELM1 : Wii = 1/#(ti ) (6)

and

WELM2 : Wii =
{

0.618/#(ti) if #(ti ) > AVG(ti )

1/#(ti ) if #(ti ) ≤ AVG(ti )
(7)

where #(ti ), average (AVG)(ti), and 0.618 denote the number
of instances belonging to the class ti , the average number
of instances over all classes, and the value of the golden
standard, respectively. Compared with WELM2, WELM1 is
more practical and popular. Then, the solution can be described
as follows:

β =

⎧⎪⎪⎨
⎪⎪⎩

H T
(

I

C
+ W H H T

)−1

W T, when N ≤ L(
I

C
+ H W H T

)−1

H T W T, when N > L .

(8)

D. Online Sequential Extreme Learning Machine

In 2006, Liang et al. [39] proposed an online sequential
learning mode of ELM named oversampling (OS)-ELM. OS-
ELM adopts extended recursive least squares for training with
sequentially received data that can be either received in the
mode of one by one or chunk by chunk. Based on their
derivation, the update rule of the output layer weight matrix
β can be represented as

β(k+1) = β(k) + Pk+1 H T
k+1(Tk+1 − Hk+1β

(k)) (9)

where Hk+1 and Tk+1 correspond to the hidden layer output
matrix and the target matrix of the new observations in the
(k + 1)th chunks, while β(k) and β(k+1) denote the output
layer weight matrix β after receiving the kth and (k + 1)th
chunks, respectively. As for Pk+1, it can be calculated by the
following formula:

Pk+1 = Pk − Pk H T
k+1(I + Hk+1 Pk H T

k+1)
−1 Hk+1 Pk (10)

that is, Pk can also be iteratively updated, and the initial P0
can be represented as

P0 = (H T
0 H0)

−1 (11)

where H0 indicates the premier hidden layer output matrix. Let
us return to (9), as Hk+1, Tk+1, and Pk+1 all can be calculated
only by the newly received instances. Thus, the output layer
weight matrix β can be adjusted to adapt both old and new
instances, but it does not need to be recalculated with all of
the training examples. It is not difficult to observe that the
main merit of the OS-ELM algorithm is to decrease the time-
complexity to a large extent when we can only acquire the
training instances dynamically.

E. Active Learning With Extreme Learning Machine

In our previous work, we proposed an active learning
algorithm based on ELM and named it AL-ELM [21].
We found that the actual outputs of ELM can reflect the uncer-
tainty level of instances, i.e., their classification confidences.
Specifically, we also proved that there is an approximate

TABLE I

DISTRIBUTIONS OF THE SIX SYNTHETIC DATA SETS

mapping relationship between the actual outputs of ELM
and the posterior probabilities in the Bayes classifier. The
more approximate the actual outputs on different output nodes
are, the more approximate the posterior probabilities belonging
to the different classes are, and the more uncertain and impor-
tant the corresponding instance is for modeling the classifier,
too. As mentioned in Section I, labeling the most uncertain
instances, i.e., the instances that are the closest to the current
classification hyperplane, may provide a maximum promotion
for the quality of the classification model. To convert the
nonprobabilistic outputs in ELM into probabilistic outputs, we
use the sigmoid function as follows:

P(ti | fi (x)) = 1

1 + exp(− fi (x))
, i = 1, 2, . . . ,m (12)

where ti = 1 means that category i happens, fi (x) denotes
the actual output of the i th output node with respect to the
instance x . For the binary-class problem, the accumulated
probabilistic value on two output nodes strictly equals 1. For
the multiclass problem, however, the sum of the converted
probabilistic values is always larger than 1, thus we also
present a normalized strategy as follows:

P ′(ti | fi (x)) = P(ti | fi (x))∑m
k=1 P(tk | fk(x))

, i = 1, 2, . . . ,m. (13)

In AL-ELM, we select the most uncertain instances, i.e., the
instances with the most approximate actual outputs in two
different output nodes, to a label on each round. In this paper,
we inherit the uncertainty estimation and selection strategy
in AL-ELM.

III. INVESTIGATION INTO THE DISTRIBUTION

To clarify why traditional active learning algorithms are
easily destroyed by a skewed data distribution, we explore
it from the perspective of data distribution. Here, we gen-
erate six synthetic 2-D binary-class imbalanced data sets
with considering three different data distribution factors: class
imbalance ratio, class overlapping, and small disjunction. The
distributions of these six data sets are summarized in Table I.

In Table I, we can observe that data sets D1–D4 satisfy
the same distribution but have different class imbalance ratios,
from 2:1 to 200:1. Although data set D5 has the same class
imbalance ratio as D2 does, they satisfy different distributions,
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Fig. 2. First row: the original distribution of the first four data sets. Second row: classification hyperplane produced by ELM (L = 100, C = 210) on 10%
randomly extracted initial labeled instances. Third row: classification hyperplane produced by WELM (L = 100, C = 210) on 10% randomly extracted initial
labeled instances. Each column denotes one data set (D1–D4). and represent the unlabeled and labeled instances of the majority class, while and
denote the unlabeled and labeled instances belonging to the minority class, respectively (from left to right).

i.e., a different class overlapping. For D6, there are three
within-class subclusters in the minority class, and they contain
a different number of instances.

First, we investigate whether the class imbalance ratio is
related to the instance selection of active learning. We ran-
domly extract 10% of instances as the initially labeled exam-
ples on D1–D4. Then, we train an ELM classifier and a
WELM classifier on these data. The original distribution of
these data sets, the classification hyperplanes produced by
ELM and WELM (L = 100, C = 210) on the randomly
selected 10% instances can be observed in Fig. 2.

From the second row in Fig. 2, it is not difficult to
observe a clear tendency that the classification hyperplane
generated by ELM would be increasingly pushed toward the
minority class in synchronization with the increase of the
class imbalance ratio, especially on D3 and D4 whose class
imbalance ratios are more than 100:1, all instances in the
minority class would be misclassified. In fact, it is related
to the training rule adopted by the regular classifiers, i.e.,
to minimize the overall training errors. To minimize the overall
training errors, the regular classifiers focus on the accuracy of
the majority class but neglect the minority class because there
is no difference between misclassifying a majority instance
and misclassifying a minority sample.

Some previous work has indicated that almost all con-
ventional regular classifiers could be destroyed by data with
a highly imbalanced ratio [40]–[43]. Compared with ELM,

WELM proportionally increases the penalty to training errors
of the minority class instances, thus making the generated
hyperplane move closer to the real classification boundary (see
the third row in Fig. 2). In the procedure of active learn-
ing, the classification hyperplane produced by the ELM is
always far from the real boundary and the labeling instances
surrounding this hyperplane will be meaningless and waste
human resources. While WELM can generally produce a
hyperplane nearer to the real classification boundary, further
guaranteeing anyone labeled instance is important enough.
Therefore, we call weighting a balance control strategy that
can synchronously guarantee the impartiality of unlabeled
instances selection and the effectiveness of the classification
model in the procedure of active learning. Based on this
observation, it is not difficult to understand why we select
WELM but not ELM as the baseline classification model to
address the imbalanced active learning issue. In fact, it is
expected to acquire an excellent enough classification model
with as few labeled instances as possible.

Then, we investigate whether the size of the class overlap-
ping, i.e., the margin size between two different categories,
would influence the instance selection of active learning or
not. Fig. 3 presents the original distribution, the hyperplanes
produced by ELM and WELM on randomly extracted 10%
labeled instances from the D5 data set. Data set D5 has the
same class imbalance ratio (10:1) as D2 does, but they hold
different sizes of class overlapping. Comparing the second
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Fig. 3. Original distribution, classification hyperplane produced by ELM (L = 100,C = 210) and WELM (L = 100,C = 210) on 10% randomly extracted
initial labeled instances of D5 data set, respectively. and represent the unlabeled and labeled instances of the majority class, while and denote the
unlabeled and labeled instances belonging to the minority class, respectively.

Fig. 4. Distribution of the unlabeled set, the classification hyperplane produced by ELM (L = 100,C = 210) on 10% randomly extracted labeled instances,
and the classification hyperplane produced by ELM (L = 100,C = 210) on 10% representative initially labeled instances on D6 data set, respectively.

and represent the unlabeled and labeled instances of the majority class, while and denote the unlabeled and labeled instances belonging to the
minority class, respectively.

column in Fig. 2 with Fig. 3, we observe that on the large
margin class imbalance data set, the regular classifier, e.g.,
ELM, generally produces a hyperplane that is nearer to the
majority class than that produced on the small margin data
set. That is, the harmfulness will decrease in synchronization
with the increase of margin size. However, it is still harmful
to regular classifiers, so adopting a balance control strategy is
still necessary (compare the second subgraph with the third
subgraph in Fig. 3).

Finally, we investigate the influence of a more complex
data distribution factor, i.e., within-class subclusters that are
also called small disjunction. There are several different sub-
concepts or subdistributions in one class, and these subcon-
cepts or subdistributions have a different number of instances.
On the skewed data set with small disjunctions, we face both
the problem of “between-class imbalance” and the problem of
“within-class imbalance” [44]. Taking the D6 data set as an
example, there are three within-class clusters with an imbal-
ance ratio of 6:3:1 in the minority class. Then, a problem will
appear, i.e., if none of the instances in the small subclusters
are selected into the initially labeled set (seed set), then it
is possible to permanently misclassify all instances belonging
to these clusters. The problem is called the missed cluster
effect [45]. To address this problem, we adopt the hierarchical
clustering technique to subtly explore the distribution structure
of the collected unlabeled instances, further precisely selecting

and labeling those representative examples to construct the
initial seed set. Specifically, after hierarchical clustering is
finished, the instance that is closest to the centroid of each
cluster is extracted to label, as these instances are considered
the representative instances. Fig. 4 presents the procedure of
seed sets generation by randomly extracting labeled instances
and selecting representative samples with the hierarchical clus-
tering technique, and the classification hyperplanes produced
by the ELM on these two seed sets. To simulate the actual
procedure of active learning, half of the instances in the
D6 data set are randomly extracted to construct the initially
collected unlabeled set, and then 10% of the examples in the
unlabeled set is extracted randomly and selected carefully by
the clustering technique.

Fig. 4 indicates that if we randomly extract some instances
to construct the initially labeled seed set, some small subclus-
ters may be missed and may even be permanently misclassified
because they are far from the initial classification hyperplane.
That means, these instances might not be labeled perma-
nently during active learning. Hierarchical clustering, however,
is helpful for finding those representative instances that can
better describe the original data distribution. In addition, this
technique is useful for avoiding the cold start phenomenon that
often appears in the scenario of highly skewed data distribu-
tion. Cold start means that none of the minority class instances
are selected into the seed set, resulting in the impracticability
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of active learning [46]. Fig. 4 shows that the selection of
initially labeled examples based on the clustering technique
explores all small distribution structures, and further extracts
more instances belonging to the minority class, thus it can be
used to effectively reduce the probability of a cold start. In this
paper, all experiments are based on the seed set generated
by the hierarchical clustering technique, and the number
of subclusters equals the number of the initially labeled
instances.

The analysis mentioned above demonstrates that on imbal-
anced distribution data, the performance of active learning can
be influenced by a combination of multiple factors and is not
only related to class imbalance ratio. Therefore, it is necessary
to conduct a balance control strategy during active learning,

IV. AOW-ELM ALGORITHM MODEL

A. Online Sequential Weighted Extreme Learning Machine

As we know, active learning conducts an iterative procedure,
i.e., adding one or a batch of new labeled instances into the
labeled set each round. Undoubtedly, it would be quite time-
consuming to retrain the classification model on each round.
Therefore, it is necessary to adopt an online learning algorithm
to implement active learning. Mirza et al. [47] presented an
online sequential WELM algorithm to address the incremental
class imbalance learning problem. However, the algorithm
is based only on the least-squares version and not on the
optimization version of ELM, thereby losing control of the
generalization ability of ELM. In addition, the iterative weight
tuning and ranking mechanism adopted in this algorithm
increase the unnecessary time expenditure. In [48], a kernel-
based imbalance online learning algorithm was presented.
The algorithm is effective in addressing imbalanced online
learning with concept drift. However, it has a limitation for
application in our active learning scenario, i.e., its instance
weight is correlated with the number of training instances
belonging to each class acquired to date, which means that
the new instances’ weights will gradually decrease, while the
old instances could be highlighted. Obviously, it cannot satisfy
our application requirements. To avoid these problems, a novel
online sequential WELM algorithm based on the optimization
version is proposed in this paper. Its derivation process is
similar to the OS-ELM algorithm [39].

Based on (8), we have

β =
(

I

C
+ H W H T

)−1

H T W T

=
(

I

C
+ (

√
W H )T (

√
W H )

)−1

(
√

W H )T (
√

W T ). (14)

Then, (14) can be rewritten as

β =
(

I

C
+ U T U

)−1

U T V (15)

where

U = √
W H

V = √
W T . (16)

Before the incremental learning starts, we only hold the
initially labeled seed set, thus the first classification model
can be represented as follows:

β(0) =
(

I

C
+ U T

0 U0

)−1

U T
0 V0 (17)

where

U0 =
√

W0 H0

V0 = √
W0T0 (18)

where W0, H0, and T0 are calculated with the initial seed set.
Then, we consider the incremental procedure, for the (K +1)th
iteration, the weight matrix of the output layer β could be
represented as

β(K+1) =
(

I

C
+ U T

K+�K UK+�K

)−1

U T
K+�K VK+�K (19)

where

UK+�K = √
WK+�K HK+�K =

[
UK

U�K

]

VK+�K = √
WK+�K TK+�K =

[
VK

V�K

]
(20)

and �K indicates the (K + 1)th received the chunk of the
incremental labeled instances. According to (20), (19) can be
written as

β(K+1) =
(

I

C
+U T

K UK +U T
�K U�K

)−1

(U T
K VK +U T

�K V�K ).

(21)

Revisiting (17), let

P0 = I

C
+ U T

0 U0. (22)

Combining (21) and (22), β(1) is given by

β(1) = (P0 + U T
�1U�1)

−1U T
0 V0 + U T

�1V�1 (23)

then P1 can be represented as

P1 = P0 + U T
�1U�1 = I

C
+ U T

1 U1. (24)

Thus, it is not difficult to deduce the expression of PK+1

PK 1 = PK + U T
�K U�K = I

C
+ U T

K UK + U T
�K U�K . (25)

Combining (23) and (27), we have

β(K+1) = (PK + U T
�K U�K )

−1(U T
K VK + U T

�K V�K ). (26)

Then, we observe the second term in (28), it can be
transferred to

U T
K VK +U T

�K V�K = PK P−1
K U T

K VK + U T
�K V�K

= PK

(
I

C
+U T

K UK

)−1

U T
K VK +U T

�K V�K

= PKβ
(K ) + U T

�K V�K . (27)

Integrating the result into (28), we have

β(K+1) = (PK + U T
�K U�K )

−1(PKβ
(K ) + U T

�K V�K ). (28)
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As PK can be incrementally updated, U�K and V�K are
merely correlated with the instances in the newly received
chunk, thus β(K+1) can be deduced from β(K ).

By observing (28), it is clear that the time-complexity of
the learning procedure mentioned above is linear with respect
to the number of the incrementally labeled instances because
in each round, the new incremental training time is related to
only the number of newly labeled training instances. Because
the quality of ELM is determined only by the weight matrix
of the output layer β, updating β means the implementation
of online incremental learning.

B. Weight Update Rule

Next, we focus on the problem of weight setting for the
newly received labeled instances during online learning. In the
work of Zong et al. [37], the weight assignment is related to
the reciprocal of the number of the instances belonging to
each category. It is obviously improper to assign the weights
by this strategy, as with an increase in the number of labeled
examples, the weights used to punish the newly inserted
instances would decrease sharply, resulting in the classification
model focuses on the previous instances, but neglects the
newly labeled ones. In other words, we need a more robust
weight assignment strategy that should be irrelevant to the
timeline. Here, we provide a stable weight update strategy
for online learning on binary-class skewed data. For a newly
labeled instance xi , its weight can be assigned as

wi =

⎧⎪⎪⎨
⎪⎪⎩

|N+|
|N+| + |N−| , if xi belong to the majority class

|N−|
|N+| + |N−| , if xi belong to the minority class

(29)

where |N+| and |N−| denote the number of instances belong-
ing to the positive class (minority class) and the negative
class (majority class) in the currently labeled set, respectively.
The weights rely only on the ratio between the number of
instances belonging to two different classes, regardless of the
absolute number of instances, so it would be more stable
than (6) which might assign monotonically decreasing weights
to the new instances and further gradually reduce the effect
of the newly learned instances. Furthermore, the ratio of
the weights between two different classes reflects the class
imbalance ratio. However, during online learning, the ratio still
fluctuates dynamically.

C. Early Stopping Criterion

As we know, the objective of active learning is to acquire
a high-quality classification model in synchronization with
reducing the number of labeled instances. Therefore, exhaust-
ing all unlabeled instances is unacceptable in practical active
learning applications. In fact, an early stopping criterion
should be previously designated to ask active learning when it
should be stopped. The optimal stopping time should simulta-
neously guarantee two conditions: 1) the performance of the

Fig. 5. Classification hyperplane (black line), contour lines (gray lines)
directed by four different thresholds (0.1, 0.3, 0.5, and 1.0), and their margin
ranges produced by WELM (L = 100,C = 210) on 10% randomly extracted
labeled instances on D5 data set. and represent the unlabeled and labeled
instances of the majority class, while and denote the unlabeled and
labeled instances belonging to the minority class, respectively.

current classification model should be good enough and 2) the
size of the total labeled instances should be small enough.

In this paper, we refer to the idea of the margin exhaustion
criterion presented in the work of Ertekin et al. [33], and then
design a more flexible early stopping criterion. Unlike SVM,
there is no concept about margin in ELM, but in our previous
work, we observed that the contour line of a designated actual
output value in ELM could be used to describe the confidence
distribution, while a pair of contour lines can direct a so-called
margin. Fig. 5 presents the margin ranges beyond four different
thresholds constructing on 10% randomly labeled instances
of the D5 data set trained by WELM. Threshold μ denotes
the actual output absolute value of the output node. Thus,
a specific threshold μ corresponds to a pair of contour lines
that indicate a margin. With an increase in the threshold μ,
the margin will become larger. It is clear that the larger the
threshold μ is designated, the lower the acceptable uncertainty
level is, thus more instances must be labeled in the active
learning procedure.

In this paper, margin exhaustion means that for a given
threshold μ, finding two corresponding contour lines in the
instance space, when and only when all instances laying
between these two contour lines have been labeled, active
learning can be stopped. Of course, in practical applications,
we do not need to describe the contour lines, but only compare
the actual output of an instance with the given threshold to
determine whether the instance drops into the margin. In addi-
tion, the actual output of ELM can be considered a variant
of posterior probability, so the proposed stopping criterion
is also approximately equivalent to the maximum confidence
stopping criterion [49]. Therefore, it is not difficult to observe
that the proposed early stopping criterion is both effective and
more flexible than the traditional margin exhaustion criterion.
A discussion of the threshold μ is given in Section V.

D. AOW-ELM Algorithm Description

In this section, we expect to describe the detailed procedure
of the AOW-ELM algorithm as follows.
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TABLE II

DATA SETS USED IN THIS PAPER

1) Algorithm: AOW-ELM.
2) Input: A collected unlabeled instance set �, the number

of initially labeled instances κ , the initially labeled set
ψ = φ, the number of labeled instances on each round
υ, the number of the hidden nodes L, the penalty factor
C , and the stopping threshold μ.

3) Output: The final weight matrix β(F).
4) Procedure.

a) Clustering all instances in� into κ different groups
by hierarchical clustering technique.

b) Find the instance that is closest to the centroid in
each cluster extract and label them, and then shift
them from � to ψ .

c) Count and record the number of minority instances
|N+| and majority instances |N−| in ψ .

d) Adopt (29) to calculate and acquire the initial
weighting matrix W0.

e) Generate the hidden-layer parameters randomly for
L hidden nodes.

f) Calculate β(0) using (8) and P0 using (22).
g) Calculate the actual output of each instance in �,

if there exist outputs smaller than the threshold μ,
continue to conduct the next step, else, stop, and
return the current β as β(F).

h) Rank all instances in � according to their actual
output absolute values in ascending order, and then
extract υ first instances to submit to human experts
for labeling.

i) Transfer υ new labeled instances from � to ψ .
j) Update |N+| and |N−|, and assign the weights for

these υ new labeled instances using (29).
k) Compute U�K and V�K for υ new labeled

instances taking advantage of the random parame-
ters generated for the hidden layer in step. e.

l) Update P using (25).
m) Update β using (28), and then return to step. g.

V. EXPERIMENTS

A. Data Sets

In this paper, we focus on conducting active learning on
binary-class imbalanced data. Overall, 32 binary-class imbal-
anced data sets that are used, most of which come from the
University of California-Irvine (UCI) machine learning data
repository [50], and the others are from several publications
about bioinformatics [51]–[53]. These data sets have different
number of instances, number of features, and class imbalance
ratios. In addition, for each data set, half of the instances
are reserved as the test set, and in the other half, a specific
percentage of instances is extracted as an initially labeled seed
set. The percentage correlates with the size of the data set and
class imbalance ratio to avoid cold starts as much as possible.
Furthermore, the batch size of active learning, i.e., the number
of instances labeled on each round, is also associated with the
size of data set. The detailed description and settings about
these data sets are provided in Table II.

B. Parameter Settings

To show the effectiveness of the proposed AOW-ELM
algorithm, we compare it with six other algorithms.

1) AO-ELM: It combines the AL-ELM algorithm [35] with
the OS-ELM algorithm [39], but does not adopt the
balance control strategy during active learning. In fact,
it can be regarded as a baseline algorithm that is used
to indicate the necessity of a balance control strategy.

2) Random Online-sequential Weighting (ROW)-ELM: It
adopts online sequential WELM, but on each round,
the new incremental samples are selected randomly.
It can also be seen as a baseline algorithm to make clear
the necessity of active learning.

3) RUS-ELM [25]: It adopts RUS as the balance control
strategy in the procedure of active learning. Specifically,
it is required to reserve the current undersampling set to
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TABLE III

PERFORMANCE (ALC METRIC) COMPARISON OF VARIOUS ALGORITHMS

conduct undersampling on next round, thus we did not
adopt online learning in this algorithm.

4) ROS-ELM [25]: It adopts ROS as the balance control
strategy in the procedure of active learning. In par-
ticular, during active learning, all currently labeled
instances must be reserved for generating the over-
sampling instances on the next round. In each round,
a new increased oversampling set will be learned
incrementally.

5) BootOS-ELM [25]: It adopts the BootOS algorithm
as the balance control strategy in the procedure of
active learning. The procedure of BootOS is similar to
ROS. Parameter K in BootOS was designated a default
value 5. When the number of the labeled instances
belonging to the minority class is smaller than K ,
it adopts ROS to copy minority instances.

6) Active Cost Sensitive (ACS)-SVM [26]: CS-SVM is
adopted as the balance control strategy during active
learning, and SVM is used as the baseline classifier. All
parameters inherit from [26].

All algorithms were implemented in MATLAB 2013a envi-
ronment, and experiments were conducted on an Intel(R) Core
i7 6700HQ 8 cores CPU (main frequency: 2.60 GHz for each
core) and 16-GB RAM.

To evaluate the performance of each algorithm at a specific
time point to construct the learning curve, we adopted the
G-mean metric that can be calculated as

G-mean = √
Acc+ × Acc− (30)

where Acc+ and Acc− denote the accuracy of the minority
class and the majority class, respectively. The G-mean metric
evaluates the tradeoff between the accuracy of the minority

class and that of the majority class. Then, to evaluate the
quality of the overall learning procedure, we adopt a popular
active learning evaluation metric: area under the learning
curve (ALC) [54]. The ALC metric is calculated based on
the G-mean values of all time points on the learning curve.
Therefore, we can say that the G-mean metric here is only used
to serve for the ALC metric. To compare various algorithms
fairly, the ALC metric was calculated upon exhausting all
unlabeled instances.

For each algorithm related to ELM, a sigmoid function
is used to calculate the hidden-layer output matrix, and two
main parameters L and C are determined by grid search,
where L ∈ {10, 20, . . . , 200} and C ∈ {2−4, 2−2, . . . , 220}.
For ACS-SVM, the Gaussian radial basis kernel function is
adopted, and the penalty factor C and the width parameter σ
are also tuned by grid search, where C ∈ [2−8, 2−7, . . . , 28]
and σ ∈ [2−8, 2−7, . . . , 28].

Considering the randomness of the experiments, the experi-
mental results may be unstable. Therefore, we adopt 50 times
random fivefold cross-validation to calculate the average result
for each algorithm.

C. Comparison of Classification Performance

We first test the ALC metric of various compared algorithms
on 32 given data sets. Table III presents the average results
of 50 times random fivefold cross-validation.

We can see from Table III that on most data sets, the
algorithms with the balance control strategy improve the
performance to some extent. That means that inserting bal-
ance control strategy into the procedure of active learning
is effective and necessary. However, on several other data
sets, including vowel0, banknote-authentication, segmentation
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grass and magic, the promotion is not clear. Specifically,
on the data sets mentioned earlier, it is possible to reduce
the performance for those algorithms with the balance control
strategy. As discussed in Section III, the performance of active
learning upon the skewed data distribution has a relationship
with multiple factors. Therefore, we consider that there might
be a low imbalance ratio, large class margin, and no existence
of small disjunctions in those four data sets. In fact, we observe
that the imbalance ratio of those data sets is indeed very low.
As expected, the results testify our hypothesis.

For sampling-based active learning algorithms, BootOS-
ELM significantly outperforms ROS-ELM on a majority of
the data sets, as it effectively alleviates the overfitting of
the classification model, further help to extract more useful
unlabeled instances during active learning. It is also surprising
that RUS-ELM can produce a quite high performance on many
data sets, which is not in accordance with the conclusion of
Zhu and Hovy [25]. Zhu and Hovy [25] thought that the RUS
strategy had two obvious drawbacks as follows: 1) RUS wasted
many labeled instances and 2) RUS had a distinct reduction in
performance. In fact, when we seriously examined the results
in Table III, it was not difficult to observe that RUS-ELM gen-
erally performed better on those highly imbalanced data sets,
such as abalone19, page-blocks5, microRNA, and Box H/ACA
snoRNA. Of course, the performance of the RUS-ELM algo-
rithm was quite unstable, it produced significantly lower ALC
metrics on some data sets, e.g., 0.0000 on the magic data
set. Therefore, we suggest using it with caution in practical
applications.

When comparing ROW-ELM with the proposed AOW-ELM
algorithm, we see that on a majority of the data sets,
AOW-ELM significantly outperforms ROW-ELM, indicating
that uncertainty-based instance selection can be faster than
random instance selection to improve the quality of the classi-
fication model. In other words, the results also demonstrate the
effectiveness of our proposed uncertainty estimation and selec-
tion strategy in the work of Yu et al. [21]. In addition, we also
note that on several highly imbalanced data sets, ROW-ELM
often performed better than AOW-ELM. We think that on
these data sets, there may have existed much more noise that
could influence the accuracy of uncertainty estimation, thereby
uncertainty sampling was even worse than random sampling.

In contrast to the ACS-SVM algorithm [26], our proposed
AOW-ELM algorithm seems not to be obviously superior.
In particular, ACS-SVM achieves the best results on 12 data
sets, while the best results of AOW-ELM only cover 11 data
sets. Considering that they both adopt the idea of cost-
sensitive learning as a balance control strategy, it is not
difficult to understand why they had similar performance.
Here, the distinction between ACS-SVM and AOW-ELM is
merely correlated with different classification models adopted
by them. On these data sets, SVM outperforms ELM, while
on the other data sets, ELM outperforms SVM.

To present a thorough understanding of the comparison of
various algorithms, we also provide their statistical results.
Specifically, the Friedman test is used to detect a significant
difference among a group of results, and the Holm post hoc
test is adopted to examine whether the proposed algorithm is

TABLE IV

STATISTICAL RESULTS OF VARIOUS ALGORITHMS

distinctive among a 1 × N comparison [55], [56]. The post
hoc procedure allows us to know whether a hypothesis of
comparison of means could be rejected at a specified level of
significance α. The adjusted p-value (APV) is also calculated
to denote the lowest level of significance of a hypothesis that
results in a rejection. Furthermore, we consider the average
rankings of the algorithms to measure how good an algorithm
is with respect to its partners. The ranking could be calculated
by assigning a position to each algorithm depending on its
performance on each data set. The algorithm that achieves the
best performance on a specific data set will be given rank 1
(value 1), then the algorithm with the second-best result is
assigned rank 2, and so forth. This task is conducted over all
data sets, and finally an average ranking is calculated. The
statistical results are presented in Table IV.

Table IV shows that our proposed AOW-ELM algorithm
achieved the lowest average ranking, indicating that it is
the best among all the algorithms. In addition, we observe
that the APVs of the AO-ELM, RUS-ELM, ROS-ELM, and
BootOS-ELM are lower than a standard level of significance
of α = 0.05. That means that these four algorithms are sig-
nificantly different from the proposed AOW-ELM algorithm.
However, we cannot say that AOW-ELM is significantly
different from ROW-ELM and ACS-SVM, although it has a
lower APV value than those two algorithms.

Fig. 6 presents the learning curves of seven compared
algorithms on three representative data sets. In Fig. 6, the first
subgraph is representative of most data sets that have a
medium imbalance ratio and class overlapping. On this type
of data set, all algorithms could rapidly promote the quality
of the classification model in the initial stage of active learn-
ing, and then the learning curves would be steady or even
declining. As expected, AOW-ELM has a faster learning speed
than ROW-ELM, which demonstrates the effectiveness of the
uncertainty-based instance selection strategy again. The sec-
ond subgraph presents the learning curves generated on highly
imbalanced data sets. As we know, on the data sets with a
high imbalance ratio, there generally exists noise, and most
minority instances are even embedded into the majority class;
therefore, RUS may be more helpful for eliminating noise
and promoting the quality of the classification model. For
AO-ELM, which does not adopt any balance control strategy,
all minority instances can be even misclassified. Of course,
on this type of data set, our proposed algorithm is also
effective to some extent, but generally, it is not the best choice.
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Fig. 6. Learning curves of seven compared active learning algorithms on three representative data sets: yeast-ME3, abalone19, and segmentation-grass,
respectively (from left to right).

Fig. 7. Comparison of seven compared algorithms on the number of labeled instances belonging to the minority class in synchronization with the increase
of labeling rounds on three representative data sets: cardiotocographyc1, seed2, and abalone19, respectively (from left to right).

The third subgraph in Fig. 6 generally represents the easy
data sets that have a low imbalance ratio, large class margin,
and low noise. Therefore, we can observe that there is no
clear distinction among different learning algorithms except
RUS-ELM. Obviously, for this type of data sets, RUS is not
an excellent balance control strategy, and even the learning
algorithm without a balance control strategy can generate good
performance.

In addition to the observations discussed earlier, we also see
an interesting phenomenon that although AOW-ELM generally
performs better than ROW-ELM in the initial stage of active
learning, it could be surpassed gradually. We think that this
result is related to the proposed weight update rule. Actually,
uncertainty-based sampling strategy often tends to collect
more minority instances than a random sampling strategy
in the initial stage of active learning. For the AOW-ELM
algorithm, the total weights assigned to the minority instances
is likely higher than that assigned for the majority instances,
causing the later classification models to focus on the minor-
ity class, and then reduce the G-mean metric. Fortunately,
in practical applications, we generally do not need to exhaust
all unlabeled instances, so AOW-ELM is still a better choice
than ROW-ELM.

Tomanek and Hahn [31] thought that an excellent active
learning algorithm constructing upon the skewed data distrib-
ution should collect the unlabeled minority instances rapidly
in the initial stage of learning. Here, we examined the rising
trend of the minority labeled instances during active learning

for each compared algorithm on three representative data sets,
named cardiotocographyC1, seed2, and abalone19 (see Fig. 7).

The first subgraph in Fig. 7 presents a common trend that
existed on most of the data sets. Here, the curve of ROW-ELM
could be regarded as a benchmark, as it is approximately
linear with respect to the imbalance ratio of the initially
unlabeled set. As we can see in the first subgraph, all six other
algorithms discover many more minority unlabeled instances
than ROW-ELM does in the early stage of active learning.
In particular, the AO-ELM algorithm could even exhaust all
unlabeled minority instances approximately halfway through
the learning. It is not difficult to understand the phenomenon
by reviewing the discussions in Section III. Due to AO-ELM
not adopting any balance control strategy, the classification
hyperplane tends to appear in the region of the minority
class, causing more minority instances to be extracted in
the early stage of active learning. In contrast with several
other algorithms, our proposed algorithm presents a more
moderate trend, indicating that discovering more unlabeled
minority instances in the early stage of learning should be
helpful for promoting the quality of the classification model
rapidly, but excessive extraction may be unwanted. The second
subgraph in Fig. 7 is based on an easy data set. That means,
in this type of data set, there existed a large margin between
the instances belonging to the two different classes. As we
know, for those easy data sets, nearly all learning algorithms
could acquire satisfying results, thus they all approximately
present a linear relation with the imbalance ratio of the
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TABLE V

RUNNING TIME (SECONDS) COMPARISON OF VARIOUS ALGORITHMS

initially unlabeled set. For those difficult data sets that have a
high imbalance ratio, large class overlapping, and high noise,
all algorithms with uncertainty sampling can help discover
more unlabeled minority instances than the benchmark, i.e.,
ROW-ELM, in the early stage of learning.

In our experiments, we have not run the proposed algorithm
on multiclass data sets. In fact, on multiclass imbalance
scenarios, two main challenges are presented: 1) cold start
frequently happens as the instances belonging to some classes
are extremely scarce and 2) the weight updating rule will
lose efficacy as most multiclass imbalanced data sets are
highly skewed. We believe that the cold start problem has
to be solved by some participation by human experts, and the
second problem could be addressed by improving the weight
updating rule to equifrequently extract unlabeled instances
from different classes during active learning

D. Comparison of Running Time

Nevertheless, we should also consider the computation time.
From Table V, we can see that AOW-ELM generally has a
similar running time as AO-ELM and ROW-ELM do, but
needs less running time than several other algorithms do.
This is because both RUS-ELM and ACS-SVM do not adopt
incremental learning, ROS-ELM wastes some time to copy the
minority instances, while BootOS-ELM consumes much time
on neighborhood computation and synthetic instance genera-
tion. Therefore, we can say that AOW-ELM is a time-saving
algorithm. Its superiority would be increasingly obvious in
synchronization with increases in the instances and attributes
existing in a data set. Of course, the comparison between
ACS-SVM and AOW-ELM may be unfair as ACS-SVM does
not adopt incremental learning. However, considering that
training an individual SVM classification model is generally

much more time-consuming than training an ELM model,
we believe AOW-ELM would still be more time-saving than
ACS-SVM with incremental learning.

E. Discussion About Stopping Condition

Finally, we wish to discuss the stopping condition to make
clear the optimal setting for the threshold μ. We randomly
select three representative data sets that reflect the concepts of
easy, medium, and difficult. We let μ increase from 0.1 to 1.0
with an increment of 0.1, and then the distinction between
the performance of each stopping point and the overall best
performance was presented in Fig. 8.

In Fig. 8, we observe an approximately uniform trend on
the three different data sets. That is, at the beginning, the
distinction always decreased sharply in synchronization with
the increase of the threshold μ, and it then gradually became
stable. It is easy to understand this phenomenon: the threshold
denotes the maximum confidence level. As the threshold
increases, more uncertain instances have been labeled, so the
classification model must be closer to the optimal performance.
Although the trends are similar on the three different data sets,
their best thresholds corresponding to the inflection points are
totally different. On the easy data set seed2, μ = 0.3 could
guarantee to acquire a good enough performance, while on
the medium data set cardiotocographyC1, the best threshold
is 0.4. For the difficult data set Box H/ACA snoRNA, when the
threshold μ equals 0.6, it provides the best tradeoff between
the classification performance and labeling expenses. Revisit-
ing Fig. 5, it is not difficult to understand the phenomenon
earlier. In Fig. 5, a small threshold means exhausting the
instances in a narrow margin surrounding the classification
boundary, while a large threshold means enlarging the margin
and exhausting more instances. Considering the easy data



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Difference between the performance of each stopping point (denoting by a specific threshold μ) and the best performance on three representative
data sets: seed2, cardiotocographyC1, and Box H/ACA snoRNA, respectively (from left to right).

sets, which have low imbalance ratio and small classification
overlapping, a small threshold is enough to guarantee precisely
describing the classification boundary. However, for those
difficult data sets with a high imbalance ratio, large class over-
lapping, high noise, and even small disjunctions, we have to
assign a large threshold for them to construct excellent enough
classification models. In practical applications, the readers are
suggested to examine the instance distribution on the initially
labeled set, and then allocate an appropriate threshold.

VI. CONCLUSION

In this paper, we explore the problem of active learn-
ing in class imbalance scenario, and present a solution of
online WELM named the AOW-ELM algorithm. We find
that the harmfulness of skewed data distribution is related
to multiple factors, and can be seen as a combination of
these factors. Hierarchical clustering can be effectively used
to previously extract initial representative instances into a
seed set to address the potential missed cluster effect and
cold start phenomenon. The comparison between the proposed
AOW-ELM algorithm and some other benchmark algorithms
indicates that AOW-ELM is an effective strategy to address
the problem of active learning in a class imbalance scenario.
The merits of the AOW-ELM algorithm can be summarized
as follows.

1) It has a robust weight update rule.
2) Its running time is fast and linear with the training

instances.
3) It has a flexible early stopping criterion.
4) It is appropriate for various types of data sets.
In the future work, we will focus more on the problem of

active learning on multiclass imbalanced data sets. In addi-
tion, the active learning strategies addressing imbalanced and
unlabeled data streams with handling concept drifts will also
be investigated.
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